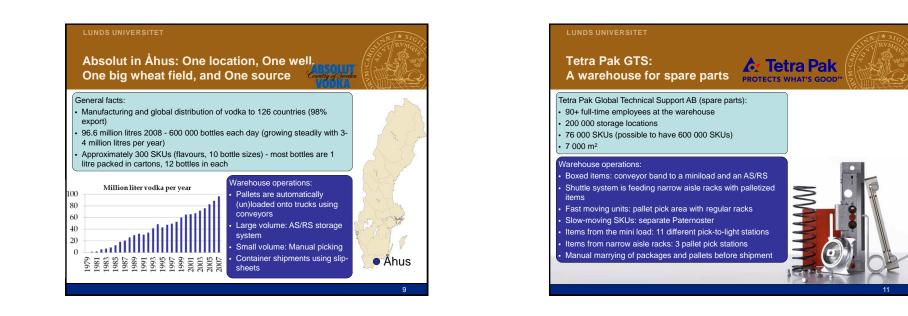
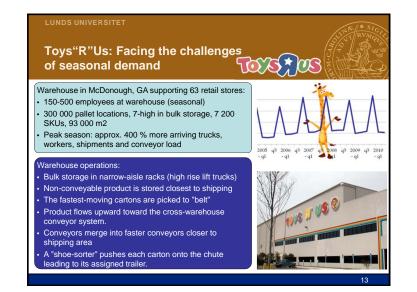

Warehousing and Materials Handling Benchmarking Optimization Layout Activity Profiling Location of receiving & Measurement & models Performance Tools & shipping Aisle configuration, statistical analysis of measurement Pick-paths Techniques Warehouse activity / Inclusion of SKU in FPA Stack height Data mining Lane depth & slotting L15 Forward Pick Are Processes Pick Labor Management ISIT/WMS Equipment Scheduling Racks & Shelves Support the operation with andling & Transportation space allocation, route Resources T vs. Temps lanning, consolidated Safety regulations Mobile picking icking and statistics nion rules

UNDS UNIVERSITET

Learning objectives

- Learn what performance measures that are suitable for benchmarking
- Learn how to measure the performance of activities in a warehouse operation
- Understand how to benchmark one warehouse with others; with whom to compare and how to improve

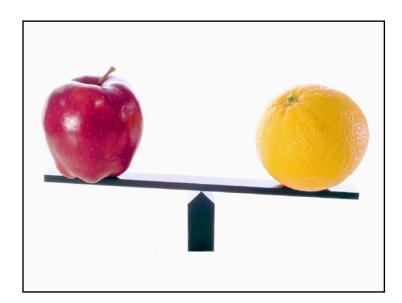


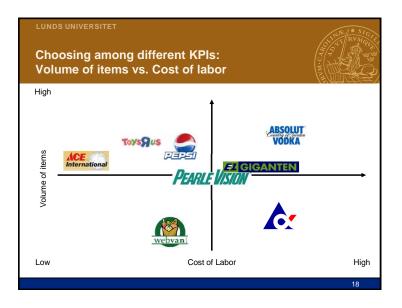


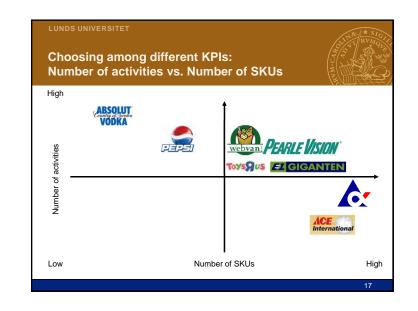
Agenda

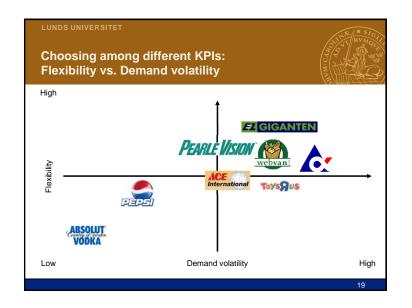
- · Benchmarking data
- Data collection •
- · Comparing different measurements

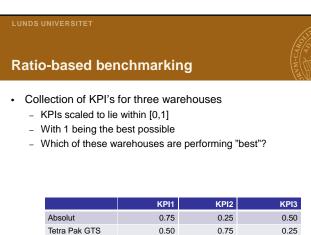
Agenda






LUNDS UNIVERSITET


Agenda


- Benchmarking data
- · Data collection
- · Comparing different measurements

0.25

Toys"R"Us

0.50

0.75

20

					NAR * SIG
Aggr	RVM·CA				
of vi	vstems-based b ew and conside folios of inputs	er, not single	inputs or ou	00 0 1	
		Labor (hrs*10^3)	Capital (\$M)	Annual pick- lines (M)	
	Absolut	100	1.0	1.6	
	Tetra Pak GTS	110	1.1	2.2	
	Toys"R"Us	90	0.9	2.0	
					22

UNDS UNIVERSITET

Ratio-based benchmarking

- Problems with simple, ratio-based performance indicators:
 - Represents a limited and therefore possibly misleading point of view
 - No wholly satisfactory model or structure to combine the measures of productivity into some integrated view
 - Sophisticated methods of aggregating KPIs result in paradoxical outcomes

	KPI1	KPI2	KPI3
Absolut	0.75	0.25	0.50
Tetra Pak GTS	0.50	0.75	0.25
Toys"R"Us	0.25	0.50	0.75

Aggregate benchmarking

- Consider the following three warehouses:
 - Which is the most efficient?
 - Scale the warehouses to the same output
 - Reveals inefficiencies of Absolut

	Labor (hrs*10^3)	Capital (\$M)	Annual pick- lines (M)
Absolut	100	1.0	1.6
Tetra Pak GTS	110	1.1	2.2
Toys"R"Us	90	0.9	2.0

Warehousing and Materials Handling

26

Data Envelopment Analysis

- Technique to study the efficiency of complex economic systems
- · Handles multiple inputs and multiple outputs
- Allows for multi-dimensional comparison with a community of other warehouse

	Labor (hrs*10^3)	Capital (\$M)	Annual pick- lines (M)
Absolut	100	1.0	1.6
Tetra Pak GTS	110	1.1	2.2
Toys"R"Us	90	0.9	2.0

LUNDS UNIVERSITET

Data Envelopment Analysis

- Computes the relative efficiency of warehouse A in comparison to a collection of i = 1, ..., n other warehouses
- Using a simple model with two inputs (Labour and Capital) and one output (Annual pick-lines)
- Suppose that warehouse A uses CA capital and LA labor to produce output OA.
- Similarly, warehouse i uses Ci capital and Li labor to produce output Oi.

UNDS UNIVERSITET

25

Data Envelopment Analysis

- We can synthesize a benchmark warehouse that can be compared with any warehouse and reveal weaknesses.
- Indicates an efficiency score in the range [0,1]
- Evaluation is done by linear programming

	Labor (hrs*10^3)	Capital (\$M)	Annual pick- lines (M)
Absolut	100	1.0	1.6
Tetra Pak GTS	110	1.1	2.2
Toys"R"Us	90	0.9	2.0

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>